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3D Euler’s equations of incompressible 

fluid motion in gravitational field g

Reduction: potential flow

- Laplace Eq.

- Bernouilli Eq.



g

Fluid

Free Space

Free surface hydrodynamics

g - acceleration of gravity

- surface tension coefficient

- shape of free surface 

Laplace Eq.:

- boundary condition at the bottom



Boundary conditions at free surface:

Kinematic condition:

Bernouilli Eq.:

- pressure at free surface

Dynamic boundary condition:

Bernouilli Eq.:

vertical component of velocity



Kinematic and dynamic boundary conditions

together with Laplace Eqs.                    form 

a closed set of equations. 

Equivalent  Hamiltonian formulation 

(Zakharov, 1968):

where - velocity potential at free

surface



The Hamiltonian =kinetic energy+ potential 

energy,

potential energy in 

the gravitational field
surface tension energy



The Hamiltonian can be rewritten as a surface integral:

Normal velocity component:

Unit normal vector:



The Hamiltonian perturbation theory:
The Hamiltonian        depend on the normal velocity        which has 

to be expressed in terms of canonical variables     and      .

But                         is the Dirichlet boundary condition for 

while       is the Neumann boundary condition,                               ,

for       .  

It means that we have to solve the Laplace Eq.                   With 

the Dirichlet                          boundary condition to find        . 

In other words, it is necessary to determine Dirichlet-Neumann 

operator

which relates         and       .  



Series expansion of       in  powers of          

and      allows to develop a perturbation 

theory for small deviations from flat surface.

Small parameter of perturbation theory:            -

a typical slope of surface elevation.

Perturbation technique:

Flat free surface is stable. 



For strongly nonlinear solutions one cannot use the perturbation theory. 

Instead we use the complex form of 2D hydrodynamics with free surface

to explicitly solve the Laplace Eq.                  at each moment of time.

Free surface parametrization in 2D:

Complex variable:

Conformal map from lower complex half-plane of  

into fluid domain                    :



g

Ideal Fluid

2D Hydrodynamics of ideal fluid with free surface

gravity surface tension

- shape of free surface 



Stream function        is defined by 

which ensures the incompressibility condition: 

Define  complex potential as

then

turns into Cauchy-Riemann conditions for analyticity of

The complex velocity: 



Fluid dynamics in conformal variables (exact form of Euler 

equation for fluid with free surface)1:

Hilbert transform:

Hilbert transform in Fourier domain:

1A.I. Dyachenko, E.A. Kuznetsov, M. Spector and V.E. Zakharov,  Phys. Lett. A 221, 73 (1996).



Water waves even in 2D are not integrable (fourth order 

matrix element is zero while 5th order is not zero on 

resonance surfaces) 1. 

Instead we suggest to fully describe 2D

hydrodynamics  of idea fluid with free surface by

the dynamics of  complex singularities outside of fluid. 

1A.I. Dyachenko, Y.V. Lvov and V.E. Zakharov, Phys. D  87, 233-261 (1995).



Example: Motion of branch cut for zero gravity

1E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov.  Phys. Rev. E, 49:1283–1290  (1994).

Weakly nonlinear solution1

Complex velocity potential

Brunch cut approaches and later

hits free surface



Distance from lower end of branch cut vs. time for weakly nonlinear

(red line) and fully nonlinear soltion (green circles)



Addition of gravity causes bifurcation of the initially vertical 

branch cut into side branches



The addition of hypervisosity (instead of gravity) is expected to

Regularizes wavebreaking but causes the forking of the initially 

Vertical branch cut qualitatively similar to gravity case 



Spatial profile in physical coordinates



Rescaling to self-similar solution



Time dependence 



Jump at the branch cut



Particular case: Travelling wave (Stokes wave)

with zero capillarity              

Dynamical equations are

reduced to

Here

Travelling wave implies the solution 

in the following form

Hilbert transform 



Stokes wave for different velocities c with g=1



Low amplitude limit of Stokes wave1

H / λ ≈ 0.1410633…

1G. G. Stokes, Trans. Cambridge Philos. Soc. 8, 441 (1847).



Limiting Stokes wave (wave of maximum height)1

1G. G. Stokes, Math. Phys. Pap. 1, 197 (1880).
2M. A. Grant, J. Fluid Mech. 59, 257 (1973).

Next order correction2



Adding capillarity or perturbing Stokes wave results in wavebreaking1,2

1S. A. Dyachenko and A.C. Newell, Stud. Appl. Math (2016)
2S. A. Dyachenko and P.M. Lushnikov (2016)



Plunging of overturning wave



Numerical

Stokes 2/3 power law

How non-limiting Stokes wave approach its limiting form?



We look at Stokes wave through its complex 

singularities and how they approach real line 1

First conformal transform

1S.A. Dyachenko, P.M. Lushnikov, and A.O. Korotkevich, JETP Letters, v. 98, 675-679 (2014). 



Second conformal transform to take into account spatial periodicity

Maps                     to the real line



- Projector to a function analytic in lower half plane

Complex form of equation for Stokes wave



Two equivalent forms of equation for Stokes wave

(1)

(2)

- nonlinear ODE for      if 

is known 



But: non-Limiting Stokes wave can have only 

square root singularities1

1S. Tanveer, Proc. R. Soc. Lond. A 435, 137-158 (1991).



Location of singularities in infinite numbers of sheets 

of Riemann surface1

First (physical) sheet Second (non-physical) 

sheet

Third and higher sheets

All singularities are square roots1

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



Two complementary approaches to analyze multiple sheets of Riemann

Surface 1 :

Approach 1: Use ODE integration along complex contours for the 

second form of Stokes wave equation:

1P. M. Lushnikov, Journal of Fluid Mechanics, v. 800, 557-594 (2016)



Approach 2: Analytical coupling of expansions near 

singularities in all sheets 1

Equation for Stokes wave:

Expansions in l th sheet 

are coupled as follows:

- upper half-plane 

- lower half-plane 

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



Coupling of singularities at                  :

...



Is other type of singularity possible? 

1. Assume coupling of singularities as power law:

and

is half-integer, i.e. no new solutions

2. If             is analytic :

only movable singularity is possible

for           with     half-integer again.

3. Fixed singularity is possible but unlikely for



Conjecture how to obtain 2/3 power law of limiting

Stokes wave from ½ power law singularities in the limit 1

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



Expression under the most inner square root:  

g(ζ) ≡ (ζ − iχc)
1/2 + (−2iχc)

1/2 

Two branches at ζ = −iχc :

- no singularity of g(ζ)

- singularity of g(ζ) at ζ = −iχc



More details on solution  

- determined by position of first off-axis singularity

× ···+h.o.t.



Location of singularities in infinite numbers of sheets 

of Riemann surface1

First (physical) sheet Second (non-physical) 

sheet

Third and higher sheets

All singularities are square roots1

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



- and all others constants                                  are 

determined by positions of off-axis singularities





Comparison of analytical, numerical and Stokes power  2/3 solutions

Stokes power 2/3

Numerical

Analytical



Stokes power 2/3

Numerical and analytical



Different approaches for numerics

1. Fourier transform on uniform grid requires 

Asymptotic                       of the Fourier series                                        of   

is given by

2. Scaling of the error                

of Pade approximation 

Pade approximation is many order more efficient for small vc



Conformal transformation method: 

For general time-dependent problem we use Fourier transform which 

has uniform grid in the new auxiliary variable q which corresponds to 

highly non-uniform grid in u. 

Additional conformal transformation between u and q:

Uniform grid   in             nonuniform grid in  

Parameter:

For             :  : 



Singularities of conformal map



For branch point of water wave 

at w=ivc

The optimal choice for the fastest spectral convergence is when  

which ensures that branch point is pushed up to

Location of branch cuts of the transformation:

Transformation moves the singularity upwards: 

Branch point at q=ivc /L



Projectors through integrals in variable u:

and similar for 

Change of variables from u to q :

But how to work with the projectors of dynamics equation



Integration contours



We split f into parts analytic in upper and lower half-planes of q:

and calculate integrals from previous slide in either upper or lower 

complex half-planes to ensure the convergence of each term which gives

Projector operators in q variable

For real-valued function f(q):

- calculated by analytical continuation 

of Fourier series



Results of conformal method for Stokes wave 1 : Comparison 

with matched asymptotics of Ref.2

2

1P. M. Lushnikov, S.A. Dyachenko and D.A. Silantyev, Submitted to Proc. Roy. Soc. A (2017)





Generalization of conformal map to resolve multiple singularities 1

Jacobian is positive-definite:

1P. M. Lushnikov, S.A. Dyachenko and D.A. Silantyev, Submitted to Proc. Roy. Soc. A (2017)



Conclusion: Practical calculations demonstrated speed up of simulations  

up to 106 times

1. Stokes wave simulations with semi-analytic Pade quadratures

2. Time-dependent simulations



Conclusion and future directions

- Analytical properties of Stokes wave in the first sheet of Riemann 

surface are fully determined by a single branch cut and the solution 

for Stokes waves in the first sheet is reduced to the evaluation 

of integral along that branch cut

- Conjecture that locations of all branch points are determined by the  

infinite number of embedded square roots which recovers Stokes 

limiting wave solution with 2/3 singularity

- Pade-type quadrature is constructed using analytical information 

about the jump at branch to solve the closed equations for Stokes 

wave either avoiding Fourier transform or using non-uniform grid. 

-Ultimate goal for the future is the description of  2D hydrodynamics 

with free surface through the dynamics of branch cuts



2S.A. Dyachenko, P.M. Lushnikov, and A.O. Korotkevich, Stud. Appl. Math., 137, 419-472

(2016)

1S.A. Dyachenko, P.M. Lushnikov, and A.O. Korotkevich, JETP Letters, 98, 675-679 (2014). 
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